Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Plant responses to water stress is a major uncertainty to predicting terrestrial ecosystem sensitivity to drought. Different approaches have been developed to represent plant water stress. Empirical approaches (the empirical soil water stress (or Beta) function and the supply‐demand balance scheme) have been widely used for many decades; more mechanistic based approaches, that is, plant hydraulic models (PHMs), were increasingly adopted in the past decade. However, the relationships between them—and their underlying connections to physical processes—are not sufficiently understood. This limited understanding hinders informed decisions on the necessary complexities needed for different applications, with empirical approaches being mechanistically insufficient, and PHMs often being too complex to constrain. Here we introduce a unified framework for modeling transpiration responses to water stress, within which we demonstrate that empirical approaches are special cases of the full PHM, when the plant hydraulic parameters satisfy certain conditions. We further evaluate their response differences and identify the associated physical processes. Finally, we propose a methodology for assessing the necessity of added complexities of the PHM under various climatic conditions and ecosystem types, with case studies in three typical ecosystems: a humid Midwestern cropland, a semi‐arid evergreen needleleaf forest, and an arid grassland. Notably, Beta function overestimates transpiration when VPD is high due to its lack of constraints from hydraulic transport and is therefore insufficient in high VPD environments. With the unified framework, we envision researchers can better understand the mechanistic bases of and the relationships between different approaches and make more informed choices.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Abstract We present optical spectroscopy of 710 solar neighborhood stars collected over 20 years to catalog chromospheric activity and search for stellar activity cycles. The California Legacy Survey stars are amenable to exoplanet detection using precise radial velocities, and we present their CaiiH and K time series as a proxy for stellar and chromospheric activity. Using the High Resolution Echelle Spectrometer at Keck Observatory, we measured stellar flux in the cores of the CaiiH and K lines to determineS-values on the Mount Wilson scale and the metric, which is comparable across a wide range of spectral types. From the 710 stars, with 52,372 observations, 285 stars were sufficiently sampled to search for stellar activity cycles with periods of 2–25 yr, and 138 stars showed stellar cycles of varying length and amplitude.S-values can be used to mitigate stellar activity in the detection and characterization of exoplanets. We used them to probe stellar dynamos and to place the Sun's magnetic activity into context among solar neighborhood stars. Using precise stellar parameters and time-averaged activity measurements, we found tightly constrained cycle periods as a function of stellar temperature between of −4.7 and −4.9, a range of activity in which nearly every star has a periodic cycle. These observations present the largest sample of spectroscopically determined stellar activity cycles to date.more » « less
- 
            null (Ed.)This paper studies conspiracy and debunking narratives about the origins of COVID-19 on a major Chinese social media platform, Weibo, from January to April 2020. Popular conspiracies about COVID-19 on Weibo, including that the virus is human-synthesized or a bioweapon, differ substan-tially from those in the United States. They attribute more responsibility to the United States than to China, especially following Sino-U.S. confrontations. Compared to conspiracy posts, debunking posts are associated with lower user participation but higher mobilization. Debunking narratives can be more engaging when they come from women and influencers and cite scientists. Our find-ings suggest that conspiracy narratives can carry highly cultural and political orientations. Correc-tion efforts should consider political motives and identify important stakeholders to reconstruct international dialogues toward intercultural understanding.more » « less
- 
            Abstract Irrigation is an important adaptation to reduce crop yield loss due to water stress from both soil water deficit (low soil moisture) and atmospheric aridity (high vapor pressure deficit, VPD). Traditionally, irrigation has primarily focused on soil water deficit. Observational evidence demonstrates that stomatal conductance is co-regulated by soil moisture and VPD from water supply and demand aspects. Here we use a validated hydraulically-driven ecosystem model to reproduce the co-regulation pattern. Specifically, we propose a plant-centric irrigation scheme considering water supply-demand dynamics (SDD), and compare it with soil-moisture-based irrigation scheme (management allowable depletion, MAD) for continuous maize cropping systems in Nebraska, United States. We find that, under current climate conditions, the plant-centric SDD irrigation scheme combining soil moisture and VPD, could significantly reduce irrigation water use (−24.0%) while maintaining crop yields, and increase economic profits (+11.2%) and irrigation water productivity (+25.2%) compared with MAD, thus SDD could significantly improve water sustainability.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
